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a b s t r a c t

Savage’s expected utility theory orders acts by the expectation of the utility function for
outcomes over states. Therefore, preference between acts depends only on the utilities for
outcomes and the probability distribution of states. When acts have more than finitely
many possible outcomes, then utility is bounded in Savage’s theory. This paper explores
consequences of allowing preferences over acts with unbounded utility. Under certain reg-
ularity assumptions about indifference, and in order to respect (uniform) strict dominance
between acts, there will be a strict preference between some pairs of acts that have the
same distribution of outcomes. Consequently in these cases, preference is not a function of
utility and probability alone.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Our paper explores sufficient conditions under which preferences over unbounded variables preclude indifference
between some pairs with the same distributions over outcomes (i.e., pairs of equivalent variables). In order to capture a
broad range of such sufficient conditions, we employ a rich measure space, as defined below. That is, in order to formulate a
wide variety of circumstances in which our results obtain, we make the following assumptions.

Consider a measure space M < �, B, P >, where P is a countably additive probability. (In Section 4 we generalize our the-
ory to accommodate merely finitely additive probability.) Let X be a class of M-measurable, real-valued variables. Hereafter,
we assume that the class X contains the constant function 1 and is closed under linear operations, i.e., if X and Y belong to X,
so too does aX + bY, with a and b real numbers. This condition insures that the linear span of each finite subset of variables
belonging to X also belongs to X. We assume that M is sufficiently rich (and ˝ is a sufficiently large set) that B contains var-
ious denumerable partitions of ˝, an instance of which we denote by

∏
= {�n: n = 1, . . .}. Where needed, we assume further

that there exist M-measurable partitions
∏

with specified geometric distributions, e.g., for 0 < p < 1, P(�n) = p(1 − p)n−1. Last,
for demonstrating several of our results we assume a discrete random variable with a distribution independent of a set of
variables defined on a particular denumerable partition

∏
. That is, given a denumerable partition

∏
and a class of variables

defined on
∏

, we sometimes assume there exists a “randomizer” with respect to these variables.

Definition 1. Variables X and Y are equivalent, denoted X ≡ Y, provided that for each interval I, P(X ∈ I) = P(Y ∈ I).

Our investigation focuses on preference among equivalent variables. We assume a preference order over elements
of X.
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• Let ≺ be a binary, strict (weak order) preference relation defined over X × X, i.e., ≺ is asymmetric, and negatively transitive:
if not X ≺ Y and not Y ≺ Z then not X ≺ Z. Denote by ∼ the induced, transitive indifference relation. That is, X ∼ Y if and only
if neither X ≺ Y nor Y ≺ X.

Definition 2. A variable is simple if, with P-probability 1, it takes only finitely many values.

When a real-valued utility function for outcomes, U(X(ω)), is bounded over ˝ and X, or when all variables in X are
simple, it is consistent with an expected utility theory of preference that the preference order is defined over the equivalence
classes of equivalent variables. (See, for example, Fishburn (1979) chapters 8 and 10.) That is, under such circumstances
two equivalent variables occupy the same place in the preference order. In this paper, we establish conditions when, using
unbounded utilities, preferences over non-simple variables cannot preserve indifference between all pairs of equivalent
variables. Then, the preference relation ≺ cannot be represented as a function of the probability distribution P over ˝ and a
real-valued utility function U(X(ω)) defined over values of variables. To simplify our presentation, and assuming that utility is
measurable, we take the values of variables to be their utilities, X(ω) = U(X(ω)). Thus, since each real-valued constant belongs
to X, U is unbounded both below and above.

We introduce two further requirements that, together with the assumption that preference is a weak order, constitute
what we mean by a coherent preference.

• Coherent Indifference: If X ∼ Y then (X − Y) ∼ (Y − X) ∼ 0.

This requirement expresses the idea that when variables X and Y are indifferent there is no value in selling one for gaining
the other. Such a trade is judged indifferent with the status-quo, which we represent as the constant function 0.

Definition 3. Variable Y (uniformly strictly) dominates variable X if, for some ε > 0 and for each ω, Y(ω) − X(ω) ≥ ε.

• Coherent Strict Preference: If Y dominates X, then X ≺ Y.

Definition 4. A weak order preference relation is coherent when it satisfies both the Coherent Indifference and the Coherent
Strict Preference conditions, above.

Note that in the condition of Coherent Strict Preference the dominance relation is required to hold in the finest parti-
tion of ˝, the partition of ˝ by its singleton states, {ω}. We do not require that dominance with respect to an arbitrary
M-measurable partition fixes strict preference, unless that dominance obtains also in the privileged partition of ˝ by states.
Also, we require for dominance that the difference between the two variables is bounded away from 0. These restrictions
are designed to accommodate coherent preference based on a more general theory of a finitely additive probability space,
rather than a countably additive probability space. We discuss this extension in Section 4. Since our purpose in this essay
is to establish sufficient conditions under which coherent preference may not preserve indifference between all pairs of
equivalent variables, our results are strengthened by using a limited dominance condition, particularly one that is consistent
with a probability that is finitely but not necessarily countably additive.

For our investigation of preference over unbounded variables, we avoid assuming that coherent preference admits a
real-valued representation. When preference does not admit a real-valued representation, e.g., because some variables have
“infinite” values as with the St. Petersburg variable, still we need to be able to distinguish by strict preference between two
“infinite” valued variables in case one dominates another. (See Colyvan (2008) for related considerations.) And we require a
notion of indifference between variables that can be used with equivalent variables even when each has an “infinite” value.
Coherent preference, as defined above, is consistent with a non-Archimedean preference relation, as explained below, in
Section 2.

Our results about the impossibility of indifference between all pairs of equivalent variables take the following general
form. When X includes unbounded variables, we provide sufficient conditions for the existence of a finite set of pairwise
equivalent variables, {X ≡ Y1 ≡ . . . ≡ Yk} such that the variable (

∑
iYi − kX) is strictly preferred to 0. Hence, if preference

is coherent, it cannot be that equivalent variables are pairwise indifferent. This is because, if 0 ∼ (Y1 − X) ∼ (X − Y2) then
by the criterion of coherent indifference, also 0 ∼ (Y1 − X) − (X − Y2), which by finite iteration leads to the conclusion that
0 ∼ (

∑
iYi − kX). But the equivalent variables we consider also result in a situation where, because of dominance, coherent

preference requires that 0 ≺ (
∑

iYi − kX). There are two contexts for this construction, involving (Case 1) non-Archimedean
and (Case 2) discontinuous coherent preferences, each of which we describe in Section 2.

2. Coherent preferences for unbounded variables

There are two cases of coherent preferences for unbounded variables relevant to our analysis of preference over equivalent
variable:

Case 1. First we consider a coherent preference order ≺ that mandates “infinite” values for some variables, e.g., the St.
Petersburg variable, W, where P(W = 2n) = 2−n. Such an order fails the von Neumann–Morgenstern Archimedean Axiom as
adapted to coherent preferences over variables:
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• Archimedean Axiom: If X ≺ Y ≺ Z, then there exist 0 < a, b < 1 such that aX + (1 − a)Z ≺ Y ≺ bX + (1 − b)Z.

Let X = 0, Y = 1, and Z be a variable with “infinite” value. Then, as is well known, there is no real number a 0 < a < 1 such
that a0 + (1 − a)Z ≺ 1.

Case 2. A coherent (possibly) Archimedean preference order may fail to be continuous from below. A criterion of continuity
used, e.g., in the definition of the Lebesgue integral for unbounded functions—see Royden [1968, p. 226], adapted to coherent
preference is this:

• Continuity principle: Let X be a non-negative variable and suppose that X ∼ k for some real-valued, constant outcome k. Let
{Xn} be a sequence of non-negative variables converging (pointwise over ˝) from below to the variable X. That is, for each
state ω, Xn(ω) ≤ X(ω) (n = 1, . . .) and limn Xn = X. If Xn ∼ kn with {kn: n = 1, . . .} a sequence of real-valued constant outcomes,
then limn kn = k.

Wakker [1993, Lemma 1.8] establishes the similar property of “truncation continuity” of finite Choquet integrals for
unbounded variables. In the balance of this section we illustrate how to define coherent preference in each of these two
cases.

2.1. Case 1: Coherent preferences that cannot be represented by real values

This is the more familiar of the two situations with unbounded quantities, which we illustrate with the St. Petersburg
variable.

Example 2.1. Let N be a random variable with a Geometric(p) distribution. For each positive integer n, let �n = {N = n},
the event that N = n. Let B be the sigma field generated by N. Then P(�n) = p(1 − p)n−1, for n = 1, . . .. Suppose X contains all
the bounded variables that are B measurable. It is an elementary result of expected utility theory that ordering X by the
P-expected value, EP[X], of its elements yields a coherent preference ordering. Denote this strict preference ≺. Let the value V
of the (bounded) variable X be its P-expected value, V(X) = EP[X], and then V represents ≺ over X. That is, for X and Y elements
of X, V(X) < V(Y) if and only if X ≺ Y.

For simplicity, let p = 1/2. Define the unbounded, discrete variable W = 2N, the St. Petersburg variable, and extend X to X∗

by adding W and closing the class under linear combinations. If ≺* is a coherent order over X∗ that extends ≺, then V*(W) > r
for each real number r, and V* is not real-valued. Thus, as is well known, ≺* fails the Archimedean axiom. Nonetheless, there
is a coherent preference order over X∗ based on the following lexicography. (See Hausner (1954) for a general theory of
non-Archimedean preferences over variables that obey the “Independence” axiom of von Neumann–Morgenstern theory.)

Write X∗ ∈ X∗ as X* = (aW + bX) with X ∈ X and real numbers a and b. Then, define the weak order ≺* by:

X∗
1≺∗X∗

2 if and only if either a1 < a2, or else a1 = a2 and b1V(X1) < b2V(X2).

That ≺* is coherent follows because—

• For the first criterion: If X∗
1 ∼ X∗

2 then a1 = a2 and b1V(X1) = b2V(X2). Hence, denoting (X∗
1 − X∗

2) by X∗
3, we see that X∗

3 ∈ X as
a3 = (a1 − a2) = 0. But V[b1(X1) − b(X2)] = b1V(X1) − b2V(X2) = 0. Therefore (X∗

1 − X∗
2)∼∗0, as required.

• For the second criterion: If X∗
2 dominates X∗

1 then, as the dominance must hold on all states in the “tail” of the Geometric(p)
where W is unbounded, a1 < a2 and therefore X∗

1≺∗X∗
2 as required.

Next, we introduce the class of generalized St. Petersburg variables that we use in Section 3. Let m be a nonnegative
integer, and let N have the Geometric(1 − 2−m) distribution. Let p = 1 − 2−m, and define q = (1 − p)/p. Let U be independent of
N and have the Bernoulli(q) distribution. Define �ni: n = 1, . . .; i = 0, 1 by �ni = {N = n}∩ {U = i}. Then, P(�n1 ∪ �n2) = p(1 − p)n−1,
with P(�n1) = (1 − p)n and P(�n0) = (2p − 1) (1 − p)n−1.

Definition 5. The generalized St. Petersburg(p) variable, Wm is constant on each element of the partition
∏

= {�ni: n = 1, . . .;
i = 1, 0} with values Wm(ω) = (1 − p)−n for ω in �n1 and Wm(ω) = 0 for ω in �n0.

Note, for m = 1 then W1 is the familiar St. Petersburg variable, W, from Example 2.1.
With Theorem 1 (formulated in Section 3) we establish that, given p, coherent preferences cannot preserve indifference

between all pairs in a specific finite set of variables, each of which is equivalent to a generalized St. Petersburg(p) variable.

2.2. Case 2: A coherent, Archimedean preference ordering that, though represented by real values, is not given by the expected
values of its (non-simple) variables

Consider the class X of all the bounded variables and let V(X) = EP[X]. Define a coherent preference order ≺ in terms of
values of V. Let Z be an unbounded random variable, bounded below, and with finite expectation −∞ < EP[Z] < ∞. Extend X to
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X∗ by including Z and closing under linear combinations. As de Finetti has argued [1974, p. 131], the preference order ≺ may
be extended to an order ≺* over X∗ that respects the dominance criterion if and only if Z is assigned an extended real value
V*(Z) at least as great as its expectation. Choose V*(Z) = EP[Z] + �(Z), with 0 ≤ �(Z) < ∞. We let �(Z) denote the real-valued
boost that Z receives in excess of its expected value.

Aside: It is coherent, also, to let �(Z) = ∞, which results in a discontinuous, non-Archimedean preference order. We do not
investigate such orders in this paper.

More generally, let ≺ be a coherent Archimedean order over the class Y of random variable with finite absolute P-
expectation. That is, for Y ∈ Y, EP[|Y|] < ∞. Let V be a real-valued representation of this order. The boost function �(·) is
defined as follows.

Definition 6. �(Y) = V(Y) − EP[Y].

It is straightforward to show that over the class Y the boost function �(·) is a finitely additive linear operator (Dunford
and Schwartz, 1988, p. 36) that has the value 0 on all bounded variables. That is, �(X + Y) = �(X) + �(Y), �(aY) = a�(Y), and
when X is a bounded variable then �(X) = 0. Since, by de Finetti’s result, in order to respect dominance the boost function for
variables bounded below is non-negative, it follows that the boost is non-positive for variables bounded above.

The next example illustrates a coherent preference order that involves positive boost for an unbounded geometric variable.

Example 2.2. Let Z have the Geometric(p) distribution, and define �n = {Z = n} for n = 1, . . . so that P(�n) = p(1 − p)n−1

for n = 1, . . .. Let
∏

denote the partition {�n: n = 1, . . .}. Let X contain all the bounded
∏

-measureable variables and
let V(X) = EP[X]. Extend X to X∗ by including the unbounded, discrete variable Z with EP[Z] = p−1. Close X∗ under lin-
ear combinations, which entails that all variables in X∗ have finite absolute expectations. Choose a finite positive
boost for Z, �(Z) = b > 0. Then, define V*(Z) = EP[Z] + b, and generally, for X∗ ∈ X∗ where X* = aZ + cX, with X ∈ X, define
V*(X*) = V*(aZ + cX) = aV*(Z) + cV(X) = V(X*) + ab.

The resulting preference order, ≺*, is Archimedean because it is represented by a real-valued function V*(·) that is a linear
operator on elements of X∗. Since 0 < b, ≺* is discontinuous as Z is the pointwise limit (from below) of bounded variables
Zn ∈ X. But limn→∞ V*(Zn) = EP[Z] < V*(Z). Nonetheless, ≺* is coherent. This follows because:

• If X∗
1∼∗X∗

2 then V ∗(X∗
1) = V ∗(X∗

2) and V ∗(X∗
1 − X∗

2) = 0.
• If X∗

2 dominates X∗
1 then evidently EP[X∗

1] < EP[X∗
2] and also the dominance must hold on all states in the “tail” of the

Geometric(p) distribution, where Z is unbounded. Hence, a1 < a2 and therefore V ∗(X∗
1) < V ∗(X∗

2) as required.

In Section 3.2, with Theorem 2 we establish that unless the boost function is identically 0 on all Geometic(p) variables,
and therefore unless preference is continuous from below for all variables (bounded below) whose tail is “thin” relative to
some Geometric(p) variable, a coherent strict preference obtains between some pair of equivalent variables.

3. Mandatory strict preference between some equivalent variables

We formulate our results when coherent preference cannot preserve indifference between all pairs of equivalent variables
separately for Case 1 and Case 2.

Regarding the former case, we have the following result:

Theorem 1. Let ≺ be a coherent preference order over X, and let p = 1 − 2−m.
Assume that there is at least one Geometric(p) variable Y and that there exists a random variable T with the uniform distribution

on the interval [0,1] that is independent of Y. Then some pair of equivalent variables are not indifferent.

The condition in Theorem 1, that there exists a uniform random variable on the interval [0,1] that is independent of Y
could be replaced by a slightly weaker condition requiring the existence of a large collection of discrete random variables that
are independent of Y, but the precise statement of such a condition would be more complicated than the added generality
justifies.

With coherent preference that is discontinuous from below, we have the following result.

Theorem 2. Let ≺ be a coherent preference order over the class Y of variables with finite absolute P-expectations. Assume that
there exist at least two independent Geometric(p) variables Y1 and Y2, and assume that �(Yi) > 0 for at least one of i = 1 or 2. Then
some pair of equivalent variables are not indifferent.

Proofs of the two theorems are given in Appendix A and Appendix B; however, in Subsections 3.1 and 3.2 we provide
elementary illustrations.
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Table 1
Displays the values of the equivalent variables, X1, X2, and W, used in Example 3.1.

�1 �2. . . �n. . .

B
W = 2 W = 4 W = 2n

X1 = 4 X1 = 8 X1 = 2n+1

X2 = 2 X2 = 2 X2 = 2

Bc

W = 2 W = 4 W = 2n

X1 = 2 X1 = 2 X1 = 2
X2 = 4 X2 = 8 X2 = 2n+1

3.1. Strict preferences among generalized St. Petersburg(p) variables

In Theorem 1, for each Geometric(1 − 2−m) distribution (m = 2, 3, . . .), we construct a set of 2m−1 equivalent variables,
X1 ≡ X2 ≡ . . . ≡ X2m−1 , each one equivalent to a generalized St. Petersburg(1 − 2−m) variable, Wm, such that:

2m−1∑

i=1

(Xi − Wm) ∼ 2m−1. (∗)

That is, though the Xi (i = 1, . . ., 2m−1) are pairwise equivalent variables, and equivalent to Wm, their pairwise differences with
Wm cannot all be indifferent with 0.

Example 3.1 is a simplified version of the construction for the St. Petersburg(1/2) variable (Table 1).

Example 3.1. Let N have the Geometric(1/2) distribution, and let �n = {N = n} for n = 1, 2, . . . Let ˘ be the partition {�n:
n = 1, . . .) so that, P(�n) = 2−n (n = 1, 2, . . .). Let U be independent of N with U having the Bernoulli(1/2) distribution. Partition
each event �n into two equi-probable states using the independent, probability 1/2 events B = {U = 1} and Bc = {U = 0}, and
define three equivalent variables, X1, X2, and W as follows:

• the canonical St. Petersburg variable: W = 2N, which is independent of U.
• the variable X1(ω) = 2n+1 for ω ∈ B ∩ �n and X1(ω) = 2 for ω ∈ Bc ∩ �n.
• the variable X2(ω) = 2 for ω ∈ B ∩ �n and X2(ω) = 2n+1 for ω ∈ Bc ∩ �n.

Though X1 ≡ X2 ≡ W, for each ω ∈ ˝, X1(ω) + X2(ω) − 2W(ω) = 2 > 0. By dominance, this contradicts the hypothesis that the
difference between equivalent variables is indifferent to 0, which would entail that (X1 + X2 − 2W) ∼ 0.

3.2. Strict preference among equivalent variables whose values differ from their expectations

Consider a coherent, Archimedean order ≺ over the space of variables with finite absolute expectations, Y. Let V(·) be a
real-valued representation of ≺, which for a bounded variable is its expectation. That is, Y1 ≺ Y2 if and only if V(Y1) < V(Y2),
and if X is bounded, V(X) = EP(X). Let Y have a Geometric(p) distribution, so it is bounded below. Assume that V(Y) is finite
but greater than its expectation, EP[Y] = p−1. So �(Y) > 0. For Theorem 2, we show there exist equivalent variables W1 and
W2, that cannot have the same V-value. Example 3.2 illustrates a simplified version of this construction for the special case
of the Geometric(1/2) distribution, where at least two (among three) equivalent variables cannot be indifferent (Table 2).

Example 3.2. Let Y be a Geometric(1/2) variable measurable, and define �n = {Y = n} for n = 1, 2, . . .. Hence, P(�n) = 2−n,
for n = 1, 2, . . ., and EP[Y] = 2. Let U be independent of Y with U having the Bernoulli(1/2) distribution. Let B = {U = 1} and
Bc = {U = 0}, so that P(B ∩ �n) = P(Bc ∩ �n) = 2−(n+1), for n = 1, 2, . . .. Define two other variables W1 and W2 as follows:

W1(ω) = n + 1 for ω ∈ B ∩ �n; W1(ω) = 1 for ω ∈ Bc ∩ �n (n = 1, 2, . . .)and
W2(ω) = 1 for ω ∈ B ∩ �n; W2(ω) = n + 1 for ω ∈ Bc ∩ �n (n = 1, 2, . . .).

Table 2
Displays the values of the equivalent variables, Y, W1 and W2, used in Example 3.2.

�1 �2. . . �n. . .

B
Y = 1 Y = 2 Y = n
W1 = 2 W1 = 3 W1 = n + 1
W2 = 1 W2 = 1 W2 = 1

Bc

Y = 1 Y = 2 Y = n
W1 = 1 W1 = 1 W1 = 1
W2 = 2 W2 = 3 W2 = n + 1
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Obviously, W1 and W2 are equivalent. Moreover, each has the Geometric(1/2) distribution; hence, Y ≡ W1 ≡ W2. However,
for each ω ∈ ˝, W1(ω) + W2(ω) − Y(ω) = 2.

Thus, V(W1 − Y) + V(W2 − Y) = 0 if and only if V(W1) = V(W2) = V(Y) = 2. Then the value V for a Geometric(1/2) variable is its
expectation, and �(W1) = �(W2) = �(Y) = 0, and the boost function is 0 for each of these unbounded variables.

Theorem 2 has a Corollary relating to continuous preference orders, which we express in terms of tail-dominance between
variables.

Definition 7. For variables X and Y, bounded below, measurable with respect to a denumerable partition ˘ = {�1, . . .}, Y
tail-dominates X if, for some k and for all n ≥ k, Y(ω) ≥ X(ω) for all ω ∈ �n.

When Y tail dominates X, their difference Y − X is bounded below. By de Finetti’s (1974, p. 131) result, then �(Y − X) ≥ 0
and we have �(Y) ≥ �(X). Thus, Theorem 2 has this corollary.

Corollary. Suppose that for a given value of p, a coherent Archimedean preference order respects indifference between all pairs
of equivalent Geometric(p) variables. If variable X is tail-dominated by one of the Geometric(p) variables, then preference for X is
continuous from below.

4. de Finetti’s theory of coherent previsions

In this section we show that the finitely additive version of coherent preference, the variant of the theory from Section 1
modified to permit the use of merely finitely additive probabilities, applies to de Finetti’s [1974] theory of Coherent Previsions.
In de Finetti’s theory, for each real-valued variable, X ∈ X, measurable with respect to a common measurable space < ˝, B >,
the decision maker has an extended real-valued prevision, Prev(X). He allows that, in particular, when X is unbounded its
prevision may be infinite, negative or positive de Finetti’s [1974, Sections 3.12.4 and 6.5.4–6.5.9].

When the prevision for X is real-valued, it is subject to a two-sided, real-valued payoff cX(X − Prev(X)), where cX is a real
number that depends upon X and Prev(X) and which is chosen by a rival gambler. The prevision is said to be two-sided, as
cX may be chosen by the rival gambler either positive or negative (or 0), corresponding informally to the decision maker
being required to buy or to sell the payoff X for the amount Prev(X), scaled by the magnitude |cX|. When cX = 0, there is
no transaction involving X and the decision maker remains at her/his status-quo wealth, which is judged indifferent to a
null-gain, 0. In short, the decision maker is committed to using Prev(X) as the “fair price” for buying or selling each unit of
the quantity X as chosen by a rival.

When the prevision for X is infinite-positive, i.e., when X has a value to the decision maker greater than any finite amount,
then we interpret de Finetti’s theory of previsions to mean that for each real constant kX and for each cX > 0 that may be
chosen by the rival gambler, the decision maker is willing to accept (i.e., is committed to “buy”) a one-sided payoff cX(X − kX).
Likewise, when the prevision for X is infinite-negative, with value less than any finite amount, then for each real constant
kX and for cX < 0 that may be chosen by the rival gambler, the decision maker is willing to accept (i.e., is committed to sell) a
one-sided payoff cX(X − kX).

In accord with de Finetti’s theory, the decision maker is required to accept an arbitrary, finite sum of such real-valued
payoffs as fixed by the rival gambler’s selection of coefficients cX and, where one-sided payoffs are involved, constants kX.

Definition 8. Previsions are de Finetti-Coherent if there is no finite selection of non-zero constants, cX (and where one-sided
previsions are involved also constants kX) with the sum of the payoffs uniformly dominated by 0 in the partition ˝.

The previsions are (de Finetti-) Incoherent otherwise.

This criterion is related to “overtaking” between variables as used by Becker and Boyd [1997, p. 67] in intertemporal choice
with unbounded variables.

Theorem (de Finetti [1974, 3.10 & 3.12]): Previsions over the set of bounded variables are (de Finetti-) Coherent if and
only if they are the expectations of some finitely additive probability P that makes < ˝, B, P > into a finitely additive
measure space.

Note that when the variables in question are the indicator functions for events, then their coherent previsions are their
probabilities under the finitely additive measure that satisfies the theorem above.

In order to allow that all finitely additive expectations are de Finetti-Coherent, it is necessary that:

(i) dominance is limited to uniform dominance, and
(ii) dominance is formulated with respect to a privileged partition, e.g., ˝.

To see why the first condition is necessary, consider this simple counter example. Let ˝ be the positive integers and let
X(ω) = −1/ω· Let P be any (purely) finitely additive probability with P(ω) = 0 for all ω. Then EP(X) = 0; hence, X ∼ 0. Nonetheless,
0 dominates X in ˝, though not uniformly.

For motivating the second condition, observe that uniform dominance in a partition other than ˝ may fail to deter-
mine even the ordinal relation of which of two previsions is greater. For example, let ˝ = {0,1}× {1, 2, . . .}. Name the
events B = {1}× {1, 2, . . .} and �n = {(0,n),(1,n)}. Let P(B) = P(Bc) = 1/2, P(B ∩ �n) = 2−(n+1) and P(Bc ∩ �n) = 0, for n = 1, . . .. That is,
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P(�n|B) = 2−n is a countably additive conditional distribution; whereas, P(�n|Bc) = 0 for n = 1, . . ., is a purely finitely additive
conditional distribution. Since P(�n) = 2−(n+1) > 0, the conditional probability given each �n also is well defined and satisfies:
P(B|�n) = 1, n = 1, . . .. Thus, even though P(B) = P(Bc), with respect to the partition

∏
= {�1, �2, . . .} the conditional probabili-

ties satisfy: P(B|�n) = P(Bc|�n) + 1, n = 1, . . .. The conditional probability for B is greater than the conditional probability for Bc

given each � ∈∏
. Moreover, the differences are bounded away from 0. De Finetti [1974] calls this “non-conglomerability” of

conditional probability. (See Kadane et al. (1986) for additional discussion.)
These probabilities and conditional probabilities are the values of the respective de Finetti previsions, and conditional

previsions given
∏

. Thus, Prev(B − Bc|�n) = 1 (n = 1, . . .) despite the fact that Prev(B) = Prev(Bc) = 1/2. But note that the uniform
dominance of (B − Bc) over 0 for the conditional prevision, given

∏
, is not duplicated in the privileged partition by elements

of ˝, where EP[B − Bc|ω) = 1 or −1 according as ω ∈ B or Bc. It is an elementary fact of finitely additive probabilities that
always they are “conglomerable” in the privileged partition of ˝ by it elements, the partition comprised by the states of the
measure space.

Next, consider a measurable space < ˝, B > and a class X of variables over which de-Finetti-Coherent previsions are
given. We define a finitely additive coherent preference order ≺* over X based on the prevision function Prev(·). As before,
we assume that X is closed under linear spans for each finite subset of variables, and contains the constant 1.

Definition 9. X ≺* Y if and only if Prev(Y − X) > 0.

• Proposition: The preference relation ≺* is a coherent weak order if the extended real-value previsions are de Finetti-
Coherent.

Proof. For the class of simple variables the Proposition, and more, is immediate from de Finetti’s ([1972, section 5.9] or
[1974, section 3.10]) principal result about the existence of coherent (real-valued) previsions. Specifically, de Finetti shows
that for a constant c, Prev(c) = c; for variables X and Y in X, Prev(X + Y) = Prev(X) + Prev(Y); and if Prev(X) = 0, then 0 does not
uniformly dominate X in the partition ˝. His reasoning extends to bounded variables, as de Finetti notes [1972, section 5.33].

To show that the Proposition holds for classes of unbounded variables, where previsions might be infinite, assume that
extended-valued de Finetti-Coherent previsions exist over X. (We do not provide the existence proof here.) If Prev(Y − X) ≤ 0
and Prev(Z − Y) ≤ 0, then by de Finetti-Coherence of previsions, Prev(Z − X) = Prev(Z − Y + Y − X) ≤ 0 + 0 = 0, and ≺* is negatively
transitive. If Prev(X − Z) = 0, then since real-valued previsions are two-sided, Prev(Z − X) = Prev(−[X − Z]) = − 0 = 0, and ≺*
satisfies the criterion of Coherent Indifference. Last, assume that Y (uniformly) dominates X in the partition ˝. Then there
exists ε > 0 such that, for each ω ∈ ˝, X(ω) + ε ≤ Y(ω). By de Finetti-Coherence, then Prev(Y − X) ≥ ε > 0, so X ≺* Y, as required
by the criterion of Coherent Strict Preference. �

The theory of coherent preferences for finitely additive measure spaces is more general than de Finetti’s theory of (de
Finetti-) Coherent previsions. This can be seen from the fact that our account of coherent preference does not require an
Archimedean order even over the class of bounded variables. That is, a coherent preference over the class of bounded variables
may fail to have a real-valued representation; however, de Finetti-coherent previsions are real-valued for this same class.
Though this aspect of our theory is not relevant to the two Theorems of Section 3, it is important for the development of
conditional preference given null events.

It is old news that within de Finetti’s theory, coherent conditional previsions given a null event cannot be defined
from the (unconditional) coherent previsions using the device of called-off gambles. (See, e.g., Levi [1980, chapter 5].) We
conjecture that, in our framework, coherent conditional preferences given a null event may be defined from a coherent,
non-Archimedean preference order. (For related discussion involving one-sided conditional previsions, see Troffaes (2006)
and the references given there.) Nonetheless, as the results of Section 3 apply to unconditional preferences, those findings
stand whether or not this conjecture is accurate.

5. Conclusions and further questions

We have shown that coherent preference orderings over unbounded variables cannot satisfy indifference between pairs
of equivalent quantities when either:

(i) the preference order is non-Archimedean as a result of including, e.g., St. Petersburg variables, or
(ii) the preference ordering, though Archimedean, is not continuous (from below) as a result of a positive “boost” for some

variable, bounded below, that is tail-dominated by a geometric distribution.

These results conflict with the usual approach to theories of Subjective Expected Utility, such as Savage’s theory [1972],
where preference is defined over the equivalence classes of equivalent lotteries. The contrast with de Finetti’s theory is a
subtle one, however.

Like de Finetti’s theory, Savage’s theory permits merely finitely additive personal probability, i.e., preference in Savage’s
theory is not required to be continuous in the sense that we use here. But in contrast with de Finetti’s theory, in Savage’s
theory the problems with unbounded variables discussed in this paper are sidestepped entirely. In his theory given by seven
postulates, P1-P7, utility is bounded. (See Savage [1972, p. 80].) If the theory comprised by Savage’s postulates P1-P6 is
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considered, instead, the resulting weakened theory admits unbounded utility and an expected utility representation for
preference over simple lotteries. But it does not ensure an expected utility representation for preference over non-simple
lotteries, even when variables are bounded. Nor does the theory P1-P6 entail that uniform dominance is reflected in strict
preference. (See Seidenfeld and Schervish (1983) for details.)

We understand the results of this paper as pointing to the need for developing a normative theory that fits between
Savage’s P1-P7 and de Finetti’s theory of coherent previsions. The former is overly restrictive, we think, in requiring that
utility is bounded. The latter is overly generous in allowing finite but discontinuous previsions for unbounded quantities,
even when all bounded quantities have continuous previsions and probability is countably additive. We hope to find a theory
that navigates satisfactorily between these two landmarks.
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Appendix A. Proof of Theorem 1

Let p = 1 − 2−m, and let Y be a Geometric(p) variable as assumed in the statement of Theorem 1. The proof given here
works for arbitrary m. We construct a generalized St. Petersburg variable Wm and another 2m−1 equivalent variables X1 ≡
X2 ≡ . . . ≡ X2m−1 (≡ Wm), such that, if preferences are coherent and pairwise differences between equivalent variables are
indifferent to 0, then we obtain the contradiction:

2m−1∑

i=1

(Xi − Wm) ∼ 2m−1. (∗)

Fix m ≥ 2. For each n define �n = {Y = n} so that:

P(�n) = p(1 − p)n−1.

Let T be independent of Y and let it have the uniform distribution on the interval [0,1]. Partition the interval [0,1] into
the subintervals I0 = [0,1/2], and I1, . . . , I2m−1 , where the last 2m−1 intervals are all of equal length, 2−m. Define the events
Bi = {T ∈ Ii} for i = 0, 1, . . ., 2m−1.

Partition each Ii into two subintervals whose lengths are in the ratio of (1 − p): (2p − 1). Call the first subinterval Ji1 and call
the second Ji2. Let K1 = ∪iJi1 and let K2 = ∪iJi2. Define the events tn1 = �n ∩ {T ∈ K1} and tn2 = �n ∩ {T ∈ K2}, so that tn1 ∪ tn2 = �n.

The marginal probabilities for these newly defined events are:

P(tn1) = (1 − p)n, P(tn2) = (2p − 1)(1 − p)n−1,

P(Bi) = 1 − p (i = 1, . . . , 2m−1), and P(B0) = 1
2

.

Each tn1 is independent of each Bi, so that for i = 1, . . ., 2m−1,

P(Bi ∩ tn1) = (1 − p)n+1.

Next, define Wm, the generalized St. Petersburg variable as follows:

Wm(ω) = (1 − p)−n for ω ∈ tn1 and Wm(ω) = 0 for ω ∈ tn2.

Note that Wm does not depend on Bi, and Wm has infinite P-expectation.
For the remainder of the proof, we use the following notational shortcut. For a random variable X and an event B, we use

X(B) = c to indicate that X is constant on B and equals c. Define the variables Xi so that for i = 1, . . .2m−1 − 1,

Xi(Bi ∩ tn1) = (1 − p)−(n+1)

Xi(Bi ∩ tn2) = 0

Xi(Bi+1 ∩ tn1) = Xi(Bi+1 ∩ tn2) = (1 − p)−1

for other states (j /= i, i + 1):

Xi(Bj ∩ tn1) = Xi(Bj ∩ tn2) = 0
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Table 3
The partition of �n into 2m−1 + 1 rows and 2 columns, with the values of the 2m−1 + 1 equivalent variables displayed within the table.

tn1 tn2

B1 Wm = (1 − p)−n Wm = 0
X1 = (1 − p)−(n+1) X1 = 0
X2 = 0 X2 = 0
. . . . . .
X2m−1−1 = 0 X2m−1−1 = 0
X2m−1 = (1 − p)−1 X2m−1 = (1 − p)−1

B2 Wm = (1 − p)−n Wm = 0
X1 = (1 − p)−1 X1 = (1 − p)−1

X2 = (1 − p)−(n+1) X2 = 0
X3 = 0 X3 = 0
. . . . . .
X2m−1 = 0 X2m−1 = 0

.

.

.

Bi Wm = (1 − p)−n Wm = 0
X1 = 0 X1 = 0
. . . . . .
Xi−2 = 0 Xi−2 = 0
Xi−1 = (1 − p)−1 Xi−1 = (1 − p)−1

Xi = (1 − p)−(n+1) Xi = 0
Xi+1 = 0 Xi+1 = 0
. . . . . .
X2m−1 = 0 X2m−1 = 0

.

.

.

B2m−1 Wm = (1 − p)−n Wm = 0
X1 = 0 X1 = 0
. . . . . .
X2m−1−2 = 0 X2m−1−2 = 0
X2m−1−1 = (1 − p)−1 X2m−1−1 = (1 − p)−1

X2m−1 = (1 − p)−(n+1) X2m−1 = 0

B0 Wm = (1 − p)−n Wm = 0
X1 = 0 X1 = 0
. . . . . .
X2m−1 = 0 X2m−1 = 0

and

Xi(B0 ∩ tn1) = Xi(B0 ∩ tn2) = 0.

For X2m−1 , modify only the third line of this definition, as follows:

X2m−1 (B2m−1 ∩ tn1) = (1 − p)−(n+1)

X2m−1 (B2m−1 ∩ tn2) = 0

X2m−1 (B1 ∩ tn1) = X2m−1 (B1 ∩ tn2) = (1 − p)−1

for other states (j /= 2m−1, 1):

X2m−1 (Bj ∩ tn1) = X2m−1 (Bj ∩ tn2) = 0

and

X2m−1 (B0 ∩ tn1) = X2m−1 (B0 ∩ tn2) = 0.

The Xi are pairwise equivalent variables, as is evident from the symmetry of their definitions and the fact that the first 2m−1

rows have equal probability. Each Xi is equivalent to Wm as well, since the probability that each assumes the value (1 − p)−n

equals (1 − p)n for n = 1, 2, . . .. Table 3, below, displays these 2m−1 + 1 variables defined over the (2m−1 + 1) × 2 matrix partition
of a single �n.
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We establish a contradiction with the hypothesis that the difference between pairs of equivalent variables is indifferent
to 0, as follows. Consider the variable obtained by the finite sum:

Zm =
2m−1∑

i=1

(Xi − Wm).

Then

Zm(Bi ∩ tn1) = (1 − p) − n

2
+ (1 − p)−1

Zm(Bi ∩ tn2) = (1 − p)−1

Zm(B0 ∩ tn1) = −2m−1(1 − p)−n = − (1 − p)−n

2

Zm(B0 ∩ tn2) = 0.

Note that Zm does not distinguish among the Bi, which we may now collapse into a single row of cells, denoted by their union
Bc

0, with combined probability 1/2.
Write Zm as a sum of three variables, Tm, Um, and Vm, defined as follows on the four events in {B0, Bc

0} × {tn1, tn2} that
partition �n:

Tm(Bc
0 ∩ tn1) = −Um(B0 ∩ tn1) = (1 − p)−n

2

Tm(Bc
0 ∩ tn2) = Tm(B0 ∩ tn1) = Tm(B0 ∩ tn2) = 0

Um(Bc
0 ∩ tn1) = Um(Bc

0 ∩ tn2) = Um(B0 ∩ tn2) = 0

Vm(Bc
0 ∩ tn1) = Vm(Bc

0 ∩ tn2) = (1 − p−1)

Vm(B0 ∩ tn1) = Vm(B0 ∩ tn2) = 0.

Note that as P(Bc
0) = 1/2 and Vm is simple, Vm ∼ 2m−1. Observe also that Tm and −Um are equivalent, though unbounded vari-

ables. By the hypothesis that the difference between two equivalent variables is indifferent to 0, then (Tm + Um) is indifferent
to 0. Thus, equation (*) follows, which contradicts the hypothesis that the 2m−1 many variables ((Xi − Wm), for i = 1, . . .2m−1,
each is indifferent to 0.

Aside: The pairwise equivalences among the 2m−1 + 1 many variables Wm, X1, X2, . . . , X2m−1 , obtain over all values of p for
which the construction above is well defined, i.e., the equivalence obtains for all 1 > p ≥ 1 − 2−(m−1). However, in order to
avoid appeal to the following extra assumption, we apply the construction solely to the case where p = 1–2−m, when the
proof of the theorem does not require an extra assumption. The additional assumption needed to apply the construction to
the other values of p is that, if (i) X is simple with V(X) = 0 and (ii) X and Y are independent, then V(XY) = 0.

Appendix B. Proof of Theorem 2

We offer an indirect proof, assuming the hypothesis that equivalent variables with finite absolute expectations carry equal
prevision. The argument is presented in 3 parts: Part 1 of the proof defines the equivalent variables whose previsions, in
the end, cannot all be equal. The construction begins with two iid Geometric(p) variables. Part 2 develops two results about
how previsions for independent variables relate to their expected values, assuming the hypothesis. Part 3 puts the pieces
together.

Part 1 of the proof: Let V(X) = E[X] + b = t > p−1; so �(X) = b > 0. Consider two, iid draws, X1, X2, from this Geometric(p)
distribution. By the hypothesis V(Xi) = t (i = 1, 2).

Define the variable W = X1 + X2, which has the NegBin(2,p) distribution. By coherence, then V(W) = 2t.
Note that the conditional distribution P(X1|W = n) = (n − 1)−1 for (1 ≤ X1 ≤ n − 1) is uniform, because

P(X1 = k|W = n) = P(X1 = k, X2 = n − k, W = n)/P(W = n). This follows as

P(X1 = k, X2 = n − k, W = n) = P(X1 = k, X2 = n − k)
= p(1 − p)k−1p(1 − p)n−k−1

= p2(1 − p)n−2
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which is constant (and positive) for 1 ≤ k ≤ n − 1.Hence,

P(X1 = i|W = n)
P(X1 = j|W = n)

= 1 for 1 ≤ i, j ≤ n − 1.

Write W as a sum of three variables: W = W1 + W2 + W3, as defined below. The first two of these will be equivalent but they will
have different boosts. Each of these variables equals W for approximately 1/3 of all ω and equals 0 for the other approximately
2/3 of all ω. There are n − 1 ω for which W(ω) = n. When n − 1 is not a multiple of 3, W3 = n for one or two ω more than each of
W1 and W2. In the (X1, X2)-plane, the sample space for W is the set of points in the first quadrant with positive integer values
in both coordinates. In the sample space, W is constant along each finite line segment with a slope −1.The random variables
Wi (i = 1, 2, 3) are defined as follows. Let kn denote the greatest integer less than or equal to (n − 1)/3 for each integer n.

For each n

W1 = n for the kn points satisfying {W = n and 1 ≤ X2 ≤ kn}, and W1 = 0 for all other points.
W2 = n for the kn points satisfying {W = n and kn + 1 ≤ X2 ≤ 2kn}}, and W2 = 0 for all other points.
W3 = n for the n − 1 − 2kn points satisfying {W = n and 2kn + 1 ≤ X2 ≤ n − 1}}, and W3 = 0 for all other points.

It is evident that W = W1 + W2 + W3, so V(W) =
∑

iV(Wi). Also it is evident that W1 ≡ W2, as these two variables are con-
structed so that, for each n = 1, 2, . . ., the event Wi = n (i = 1, 2) obtains for the same number of P-non-null points, and P(·|W = n)
has a uniform distribution on its support of n − 1 points.

Part 2 of the proof: Next, we develop two general claims about the V-values for independent variables, Lemmas 1 and
2, from which, in Part 3, we derive that V(W2) < V(W1), in contradiction with the hypothesis that equivalent variables are
equally preferred. Both lemmas assume the hypothesis that equivalent variables are indifferent.

Lemma 1. Let Y be a nonnegative integer variable with finite mean, E(Y) = � < ∞, and finite value V(Y) = � < ∞. Coherence assures
that � ≤ �. Let F be the indicator for an event, independent of Y, with P(F) = ˛. Then V(FY) = ˛�.

Proof. If � is a rational fraction, � = k/m, the lemma follows using the hypothesis that equivalent variables are indifferent,
applied to the m-many equivalent variables FiX, where {F1, . . ., Fm} is a partition into equiprobable events Fi. That is, from
the hypothesis, V(FiY) = c (i = 1, . . ., m), and by finite additivity of previsions, then c = �/m, so that V(FY) = k�/m = ˛�. If ˛ is an
irrational fraction, the lemma follows by dominance applied to two sequences of finite partitions of equally probable events.
One sequence provides bounds on V(FY) from below, and the other sequence provides bounds from above. �

Next, let X and Y be independent variables, with X bounded below, defined on the positive integers N. Consider a function
g(i) = j, g:N → N, with the sole restriction that for each value j, g−1({j}) is a finite (and possibly empty) set. The graph of the
function g forms a binary partition of the positive quadrant of the (X, Y)-plane into events G and Gc, with G defined as: G = {(x,
y): g(x) ≤ y}. G is the region at or above the graph of g. Then, on each horizontal line of points in the positive quadrant of the
(X, Y)-plane, on a line satisfying {Y = j}, only finitely many points belong to the event G.

Let GX denote the variable that equals X on G and 0 otherwise, and likewise for the variable GcX. So, X = GX + GcX. The next
lemma shows how, under the hypothesis that equivalent variables are indifferent, the boost �(X) for the variable X divides
over the binary partition formed by the event G.

Lemma 2. With X, Y, and G defined above,

V (GX) = E(GX), whereas V (GcX) = E(GcX) + �(X).

That is, all of the boost associated with the prevision of X attaches to the event Gc, regardless the probability of Gc.

Proof. For each value of j = 1, 2, . . ., write the variable {Y = j}X as a sum of two variables, using G (respectively Gc) also as its
indicator function:

{Y = j}X = {Y = j}GX + {Y = j}GcX.

So,

V ({Y = j}GcX) = V ({Y = j}X) − V ({Y = j}GX)

and

E({Y = j}GcX) = E({Y = j}X) − E({Y = j}GX).

But {Y = j}GX is a simple variable, as the event G contains only finitely many points along the strip {Y = j}. Thus,
V({Y = j}GX) = E({Y = j}GX).

Since X and Y are independent, by Lemma 1,

V ({Y = j}X) = P(Y = j)(E[X] + �(X))
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So,

V ({Y = j}GcX) = P(Y = j)(E[X] + �(X)) − E({Y = j}GX)
= P(Y = j)�(X) + E({Y = j}X) − E({Y = j}GX)
= P(Y = j)�(X) + E([Y = j]GcX).

Thus, the prevision for {Y = j}GcX contains a boost equal to P(Y = j)�(X). But as
∑

j P(Y = j)�(X) = �(X), we have
V(GcX) =

∑
j (E({Y = j}GcX) + P(Y = j)�(X)) = E[GcX] + �(X) and there is no boost associated with GX, V(GX) = E[GX]. �

Part 3 of the proof: Recall that, by hypothesis, since X1 ≡ X2, then V(Xi) = t and �(Xi) = b > 0, for i = 1, 2. Apply Lemma 2
with X being X1, Y being X2, and g(i) = (i − 1)/2. One can verify that Gc is the set where W1 = W. It follows from Lemma 2 that
GcX1 gets all of the boost of X1 while GX1 gets none of the boost. Apply Lemma 2 again, this time with X being X2, Y being
X1, and g(i) = (i + 5)/2 for odd i, and g(i) = (i + 2)/2 for even i. This time, let H denote the set called G in Lemma 2 so that we can
distinguish it from the set found in the first application of Lemma 2. Now, Hc is the set where W3 = W, and HcX2 gets all of
the boost of X2 while HX2 gets none of the boost. We can write W1 = GcX1 + GcX2, so that W1 gets all of the boost of X1. It is
clear that Gc ⊂ H, hence GcX2 gets none of the boost of X2, and neither does W1. Similarly, we can write W3 = HcX1 + HcX2, so
that W3 gets all of the boost of X2. Since Hc ⊂ G, W3 gets none of the boost of X1. In summary

W1 gets all of the boost of X1 and none of the boost of X2, �(W1) = b > 0;
W3 gets all of the boost of X2 and none of the boost of X1, �(W3) = b > 0.

There is no boost left for W2, hence W2 gets none of the boost of either X1 or X2, and �(W2) = 0.
Since W1 ≡ W2, then E[W1] = E[W2]. Therefore, by adding the respective boosts, V(W2) < V(W1), which establishes the

Theorem.
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